Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
Sci Rep ; 13(1): 9161, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: covidwho-20245441

RESUMEN

Proteases encoded by SARS-CoV-2 constitute a promising target for new therapies against COVID-19. SARS-CoV-2 main protease (Mpro, 3CLpro) and papain-like protease (PLpro) are responsible for viral polyprotein cleavage-a process crucial for viral survival and replication. Recently it was shown that 2-phenylbenzisoselenazol-3(2H)-one (ebselen), an organoselenium anti-inflammatory small-molecule drug, is a potent, covalent inhibitor of both the proteases and its potency was evaluated in enzymatic and antiviral assays. In this study, we screened a collection of 34 ebselen and ebselen diselenide derivatives for SARS-CoV-2 PLpro and Mpro inhibitors. Our studies revealed that ebselen derivatives are potent inhibitors of both the proteases. We identified three PLpro and four Mpro inhibitors superior to ebselen. Independently, ebselen was shown to inhibit the N7-methyltransferase activity of SARS-CoV-2 nsp14 protein involved in viral RNA cap modification. Hence, selected compounds were also evaluated as nsp14 inhibitors. In the second part of our work, we employed 11 ebselen analogues-bis(2-carbamoylaryl)phenyl diselenides-in biological assays to evaluate their anti-SARS-CoV-2 activity in Vero E6 cells. We present their antiviral and cytoprotective activity and also low cytotoxicity. Our work shows that ebselen, its derivatives, and diselenide analogues constitute a promising platform for development of new antivirals targeting the SARS-CoV-2 virus.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Metiltransferasas , Péptido Hidrolasas , Antivirales/farmacología , Antivirales/metabolismo , Cisteína Endopeptidasas/metabolismo , Inhibidores de Proteasas/farmacología , Simulación del Acoplamiento Molecular
2.
Molecules ; 27(6)2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: covidwho-1742558

RESUMEN

Positive-sense single-stranded RNA (+RNA) viruses have proven to be important pathogens that are able to threaten and deeply damage modern societies, as illustrated by the ongoing COVID-19 pandemic. Therefore, compounds active against most or many +RNA viruses are urgently needed. Here, we present PR673, a helquat-like compound that is able to inhibit the replication of SARS-CoV-2 and tick-borne encephalitis virus in cell culture. Using in vitro polymerase assays, we demonstrate that PR673 inhibits RNA synthesis by viral RNA-dependent RNA polymerases (RdRps). Our results illustrate that the development of broad-spectrum non-nucleoside inhibitors of RdRps is feasible.


Asunto(s)
COVID-19 , Virus de la Encefalitis Transmitidos por Garrapatas , Humanos , Pandemias , ARN Polimerasa Dependiente del ARN , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA